Name:

MA 1118 - Multivariable Calculus Quiz 4 - Quarter I - AY 02-03

Instructions: Work all problems. Read the problems carefully. Show appropriate work, as partial credit will be given. No notes or tables permitted.

1. (15 points) Given

$$f(x,y) = x^2y + \cos(xy^2)$$

find
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y \partial x}$

solution:

To find $\frac{\partial f}{\partial x}$, we treat all other variables (in this case y) as constants, and then just take an ordinary derivative, i.e.

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[x^2 y + \cos(xy^2) \right] = 2xy - y^2 \sin(xy^2)$$

where we differentiated the first term using just the x^n rule, and the second term using the chain rule.

Proceeding similarly then

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left[2xy - y^2 \sin(xy^2) \right]$$
$$= 2y - y^2 \left(y^2 \cos(xy^2) \right) = 2y - y^4 \cos(xy^2)$$

Finally

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left[2xy - y^2 \sin(xy^2) \right]$$
$$= 2x - 2y \sin(xy^2) - y^2 \left(2xy \cos(xy^2) \right)$$
$$= 2x - 2y \sin(xy^2) - 2xy^3 \cos(xy^2)$$

2. (5 points) Identify and sketch the domain of:
$$f(x,y) = \ln(x^2 - y^2)$$

solution:

Since this is a composition with the logarithm, the domain should fairly clearly seen to be:

$$x^2 - y^2 > 0$$
 \Longrightarrow $x^2 > y^2$ \Longrightarrow $|x| > |y|$

This is precisely the region shaded below:

